MarkTechPost@AI 10月29日 14:37
Liquid AI发布LFM2-ColBERT-350M,实现高效多语言跨语言检索
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Liquid AI发布了LFM2-ColBERT-350M,一款紧凑型 late interaction 检索器,专为多语言和跨语言搜索设计。该模型允许文档以一种语言索引,而查询可以使用多种语言进行,并能实现高精度检索。值得一提的是,其推理速度与模型尺寸小2.3倍的现有模型相当,这归功于LFM2骨干网络。该模型支持包括英语、阿拉伯语、中文、法语、德语、日语、韩语和西班牙语在内的8种语言,并在包含意大利语和葡萄牙语的9种语言上进行了跨语言检索评估。在NanoBEIR多语言扩展基准测试中,LFM2-ColBERT-350M表现优于同类别的现有模型GTE-ModernColBERT-v1。

💡 **高效多语言检索能力**:LFM2-ColBERT-350M 是一款紧凑型 late interaction 检索模型,能够实现一次索引,多语言查询,并提供高精度的跨语言搜索结果。它支持8种主要语言,并在9种语言上进行了评估,显示出强大的多语言处理能力,特别是在德语、阿拉伯语、韩语和日语方面有显著提升。

🚀 **融合速度与精度的Late Interaction机制**:该模型采用 late interaction 方法,通过在查询时比较token级别的向量来保留细粒度的交互信息,同时允许文档嵌入的预计算,从而结合了bi-encoder的速度优势和cross-encoder的精度优势,为检索任务提供了更优的解决方案。

⚡ **卓越的推理速度与LFM2骨干**:LFM2-ColBERT-350M 的推理速度与模型尺寸小2.3倍的现有模型相当,这主要归功于其先进的LFM2骨干网络。这种高效的性能使其在实际应用中,尤其是在检索增强生成(RAG)系统中,更具部署潜力。

🌐 **开放的资源与社区支持**:Liquid AI提供了LFM2-ColBERT-350M的Hugging Face演示、详细的模型卡以及GitHub页面,方便用户集成到RAG系统中。模型采用LFM Open License v1.0,鼓励社区的广泛应用和进一步发展。

Can a compact late interaction retriever index once and deliver accurate cross lingual search with fast inference? Liquid AI released LFM2-ColBERT-350M, a compact late interaction retriever for multilingual and cross-lingual search. Documents can be indexed in one language, queries can be written in many languages, and the system retrieves with high accuracy. The Liquid AI team reports inference speed on par with models that are 2.3 times smaller, which is attributed to the LFM2 backbone. The model is available with a Hugging Face demo and a detailed model card for integration in retrieval augmented generation systems.

https://www.liquid.ai/blog/lfm2-colbert-350m-one-model-to-embed-them-all

What late interaction means and why it matters?

Most production systems use bi-encoders for speed or cross encoders for accuracy. Late interaction aims to combine both advantages. Queries and documents are encoded separately at the token level. The system compares token vectors at query time using operations such as MaxSim. This preserves fine grained token interactions without the full cost of joint cross attention. It allows pre-computation for documents and improves precision at ranking time. It can serve as a first stage retriever and also as a ranker in one pass.

Model specification

LFM2-ColBERT-350M has 350 million total parameters. There are 25 layers, with 18 convolution blocks, 6 attention blocks, and 1 dense layer. The context length is 32k tokens. The vocabulary size is 65,536. The similarity function is MaxSim. The output dimensionality is 128. Training precision is BF16. The license is LFM Open License v1.0.

https://huggingface.co/LiquidAI/LFM2-ColBERT-350M

Languages, supported and evaluated

The model supports 8 languages. These are English, Arabic, Chinese, French, German, Japanese, Korean, and Spanish. The evaluation adds Italian and Portuguese, which brings the matrix to 9 languages for cross comparisons of document and query languages. This distinction is relevant when planning deployments that must cover specific customer markets.

https://www.liquid.ai/blog/lfm2-colbert-350m-one-model-to-embed-them-all

Evaluation setup and key results

Liquid AI extends the NanoBEIR benchmark with Japanese and Korean and publishes the extension for reproducibility. On this setup, LFM2-ColBERT-350M shows stronger multilingual capability than the baseline late interaction model in this class, which is GTE-ModernColBERT-v1 at 150M parameters. The largest gains appear in German, Arabic, Korean, and Japanese, while English performance is maintained.

Key Takeaways

    Token-level scoring with MaxSim preserves fine-grained interactions while keeping separate encoders, so document embeddings can be precomputed and queried efficiently.Documents can be indexed in one language and retrieved in many. The model card lists 8 supported languages, while evaluations span 9 languages for cross-lingual pairs. On the NanoBEIR multilingual extension, LFM2-ColBERT-350M outperforms the prior late-interaction baseline (GTE-ModernColBERT-v1 at 150M) and maintains English performance. Inference speed is reported on par with models 2.3× smaller across batch sizes, attributed to the LFM2 backbone.

Editorial Notes

Liquid AI’s LFM2-ColBERT-350M applies late interaction ColBERT with MaxSim, it encodes queries and documents separately, then scores token vectors at query time, which preserves token level interactions and enables precomputed document embeddings for scale. It targets multilingual and cross lingual retrieval, index once and query in many languages, with evaluations described on a NanoBEIR multilingual extension. Liquid AI team reports inference speed on par with models 2.3 times smaller, attributed to the LFM2 backbone. Overall, late interaction at the nano scale looks production ready for multilingual RAG trials.


Check out the Model Weights, Demo and Technical details. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter. Wait! are you on telegram? now you can join us on telegram as well.

The post Liquid AI Releases LFM2-ColBERT-350M: A New Small Model that brings Late Interaction Retrieval to Multilingual and Cross-Lingual RAG appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LFM2-ColBERT-350M Liquid AI Late Interaction Retriever Multilingual Search Cross-lingual Search RAG AI Natural Language Processing Large Language Models
相关文章