cs.AI updates on arXiv.org 10月29日 12:26
FALQON:高效低比特浮点量化框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FALQON,一种通过将LoRA适配器直接合并到FP8量化骨干网络中,消除量化开销,实现大规模模型微调的高效低比特浮点量化框架。

arXiv:2510.24061v1 Announce Type: cross Abstract: Low-bit floating-point (FP) formats, such as FP8, provide significant acceleration and memory savings in model training thanks to native hardware support on modern GPUs and NPUs. However, we analyze that FP8 quantization offers speedup primarily for large-dimensional matrix multiplications, while inherent quantization overheads diminish speedup when applied to low-rank adaptation (LoRA), which uses small-dimensional matrices for efficient fine-tuning of large language models (LLMs). To address this limitation, we propose FALQON, a novel framework that eliminates the quantization overhead from separate LoRA computational paths by directly merging LoRA adapters into an FP8-quantized backbone during fine-tuning. Furthermore, we reformulate the forward and backward computations for merged adapters to significantly reduce quantization overhead, and introduce a row-wise proxy update mechanism that efficiently integrates substantial updates into the quantized backbone. Experimental evaluations demonstrate that FALQON achieves approximately a 3$\times$ training speedup over existing quantized LoRA methods with a similar level of accuracy, providing a practical solution for efficient large-scale model fine-tuning. Moreover, FALQON's end-to-end FP8 workflow removes the need for post-training quantization, facilitating efficient deployment. Code is available at https://github.com/iamkanghyunchoi/falqon.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

低比特浮点量化 FALQON框架 LoRA适配器
相关文章