cs.AI updates on arXiv.org 10月29日 12:25
PULSE:基于EDA的跨模态应力检测框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出PULSE框架,利用EDA信号进行自监督预训练,并在推理阶段无需EDA信号,通过融合ECG、BVP、ACC和TEMP等模态数据提高应力检测准确性。

arXiv:2510.24058v1 Announce Type: cross Abstract: Electrodermal activity (EDA), the primary signal for stress detection, requires costly hardware often unavailable in real-world wearables. In this paper, we propose PULSE, a framework that utilizes EDA exclusively during self-supervised pretraining, while enabling inference without EDA but with more readily available modalities such as ECG, BVP, ACC, and TEMP. Our approach separates encoder outputs into shared and private embeddings. We align shared embeddings across modalities and fuse them into a modality-invariant representation. The private embeddings carry modality-specific information to support the reconstruction objective. Pretraining is followed by knowledge transfer where a frozen EDA teacher transfers sympathetic-arousal representations into student encoders. On WESAD, our method achieves strong stress-detection performance, showing that representations of privileged EDA can be transferred to low-cost sensors to improve accuracy while reducing hardware cost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EDA 跨模态 应力检测 PULSE框架 传感器
相关文章