cs.AI updates on arXiv.org 10月29日 12:25
RAP框架:提升复杂物理系统预测准确性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为Retrieval-Augmented Prediction (RAP)的新框架,融合深度学习与历史数据,以提升复杂物理系统的长期时空预测准确性,并在气象、湍流和火灾模拟等领域取得显著成效。

arXiv:2510.24049v1 Announce Type: cross Abstract: Accurate and long-term spatiotemporal prediction for complex physical systems remains a fundamental challenge in scientific computing. While deep learning models, as powerful parametric approximators, have shown remarkable success, they suffer from a critical limitation: the accumulation of errors during long-term autoregressive rollouts often leads to physically implausible artifacts. This deficiency arises from their purely parametric nature, which struggles to capture the full constraints of a system's intrinsic dynamics. To address this, we introduce a novel \textbf{Retrieval-Augmented Prediction (RAP)} framework, a hybrid paradigm that synergizes the predictive power of deep networks with the grounded truth of historical data. The core philosophy of RAP is to leverage historical evolutionary exemplars as a non-parametric estimate of the system's local dynamics. For any given state, RAP efficiently retrieves the most similar historical analog from a large-scale database. The true future evolution of this analog then serves as a \textbf{reference target}. Critically, this target is not a hard constraint in the loss function but rather a powerful conditional input to a specialized dual-stream architecture. It provides strong \textbf{dynamic guidance}, steering the model's predictions towards physically viable trajectories. In extensive benchmarks across meteorology, turbulence, and fire simulation, RAP not only surpasses state-of-the-art methods but also significantly outperforms a strong \textbf{analog-only forecasting baseline}. More importantly, RAP generates predictions that are more physically realistic by effectively suppressing error divergence in long-term rollouts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

复杂物理系统 深度学习 时空预测 RAP框架 历史数据
相关文章