cs.AI updates on arXiv.org 10月29日 12:25
新型算法提升图学习预测准确率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为hdgc的新型算法,结合图卷积、绑定和捆绑操作,在超维度计算中应用于图学习。该算法在预测准确率上优于主流的图神经网络和超维度计算实现。与测试过的最准确的学习方法相比,hdgc在相同的目标GPU平台上平均比gcnii和HDGL快9561.0和144.5倍。

arXiv:2510.23980v1 Announce Type: cross Abstract: We present a novel algorithm, \hdgc, that marries graph convolution with binding and bundling operations in hyperdimensional computing for transductive graph learning. For prediction accuracy \hdgc outperforms major and popular graph neural network implementations as well as state-of-the-art hyperdimensional computing implementations for a collection of homophilic graphs and heterophilic graphs. Compared with the most accurate learning methodologies we have tested, on the same target GPU platform, \hdgc is on average 9561.0 and 144.5 times faster than \gcnii, a graph neural network implementation and HDGL, a hyperdimensional computing implementation, respectively. As the majority of the learning operates on binary vectors, we expect outstanding energy performance of \hdgc on neuromorphic and emerging process-in-memory devices.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图学习 超维度计算 算法 预测准确率 性能提升
相关文章