cs.AI updates on arXiv.org 10月29日 12:23
机器学习社会影响与公平性研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了机器学习对社会的影响,分析了数据驱动系统在缺乏公平性考虑下的歧视风险,并提出了评估公平性、预测偏差动态和减少算法歧视的方法,同时保持系统效用。

arXiv:2510.23693v1 Announce Type: cross Abstract: This PhD thesis investigates the societal impact of machine learning (ML). ML increasingly informs consequential decisions and recommendations, significantly affecting many aspects of our lives. As these data-driven systems are often developed without explicit fairness considerations, they carry the risk of discriminatory effects. The contributions in this thesis enable more appropriate measurement of fairness in ML systems, systematic decomposition of ML systems to anticipate bias dynamics, and effective interventions that reduce algorithmic discrimination while maintaining system utility. I conclude by discussing ongoing challenges and future research directions as ML systems, including generative artificial intelligence, become increasingly integrated into society. This work offers a foundation for ensuring that ML's societal impact aligns with broader social values.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 社会影响 公平性 算法歧视 数据驱动
相关文章