cs.AI updates on arXiv.org 10月29日 12:22
新型多模态框架识别社交平台自动化账户
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型多模态框架,通过整合文本特征与用户元数据,无需用户关系数据即可有效识别社交平台上的自动化账户,并取得高准确率。

arXiv:2510.23648v1 Announce Type: cross Abstract: Detecting automated accounts (bots) among genuine users on platforms like Twitter remains a challenging task due to the evolving behaviors and adaptive strategies of such accounts. While recent methods have achieved strong detection performance by combining text, metadata, and user relationship information within graph-based frameworks, many of these models heavily depend on explicit user-user relationship data. This reliance limits their applicability in scenarios where such information is unavailable. To address this limitation, we propose a novel multimodal framework that integrates detailed textual features with enriched user metadata while employing graph-based reasoning without requiring follower-following data. Our method uses transformer-based models (e.g., BERT) to extract deep semantic embeddings from tweets, which are aggregated using max pooling to form comprehensive user-level representations. These are further combined with auxiliary behavioral features and passed through a GraphSAGE model to capture both local and global patterns in user behavior. Experimental results on the Cresci-15, Cresci-17, and PAN 2019 datasets demonstrate the robustness of our approach, achieving accuracies of 99.8%, 99.1%, and 96.8%, respectively, and highlighting its effectiveness against increasingly sophisticated bot strategies.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自动化账户检测 多模态框架 社交平台
相关文章