cs.AI updates on arXiv.org 10月29日 12:21
SAND:高效硬件木马检测框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SAND的硬件木马检测框架,通过自监督学习和神经架构搜索技术,实现了高效且自适应的检测机制,显著提升了检测准确率。

arXiv:2510.23643v1 Announce Type: cross Abstract: The globalized semiconductor supply chain has made Hardware Trojans (HT) a significant security threat to embedded systems, necessitating the design of efficient and adaptable detection mechanisms. Despite promising machine learning-based HT detection techniques in the literature, they suffer from ad hoc feature selection and the lack of adaptivity, all of which hinder their effectiveness across diverse HT attacks. In this paper, we propose SAND, a selfsupervised and adaptive NAS-driven framework for efficient HT detection. Specifically, this paper makes three key contributions. (1) We leverage self-supervised learning (SSL) to enable automated feature extraction, eliminating the dependency on manually engineered features. (2) SAND integrates neural architecture search (NAS) to dynamically optimize the downstream classifier, allowing for seamless adaptation to unseen benchmarks with minimal fine-tuning. (3) Experimental results show that SAND achieves a significant improvement in detection accuracy (up to 18.3%) over state-of-the-art methods, exhibits high resilience against evasive Trojans, and demonstrates strong generalization.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

硬件木马 检测框架 自监督学习 神经架构搜索 检测准确率
相关文章