cs.AI updates on arXiv.org 10月29日 12:21
噪声组合采样:优化预训练扩散模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为噪声组合采样的新方法,用于优化预训练扩散模型在零样本逆问题解决中的表现。该方法通过从噪声子空间合成最优噪声向量,以近似测量分数,从而在不依赖逐步超参数调整的情况下,自然地将条件信息嵌入到生成过程中。实验证明,该方法在图像压缩等应用中表现出色,尤其在小步数生成时,具有显著的优势。

arXiv:2510.23633v1 Announce Type: cross Abstract: Pretrained diffusion models have demonstrated strong capabilities in zero-shot inverse problem solving by incorporating observation information into the generation process of the diffusion models. However, this presents an inherent dilemma: excessive integration can disrupt the generative process, while insufficient integration fails to emphasize the constraints imposed by the inverse problem. To address this, we propose \emph{Noise Combination Sampling}, a novel method that synthesizes an optimal noise vector from a noise subspace to approximate the measurement score, replacing the noise term in the standard Denoising Diffusion Probabilistic Models process. This enables conditional information to be naturally embedded into the generation process without reliance on step-wise hyperparameter tuning. Our method can be applied to a wide range of inverse problem solvers, including image compression, and, particularly when the number of generation steps $T$ is small, achieves superior performance with negligible computational overhead, significantly improving robustness and stability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

预训练扩散模型 噪声组合采样 逆问题解决 图像压缩 超参数调整
相关文章