cs.AI updates on arXiv.org 10月29日 12:21
LLMCOMP:基于LLM的科学研究数据压缩新范式
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为LLMCOMP的新型损失压缩范式,利用仅解码的大语言模型对科学数据进行建模,通过量化、局部性保持和覆盖引导采样等手段,在严格误差范围内实现了高达30%的压缩率。

arXiv:2510.23632v1 Announce Type: cross Abstract: The rapid growth of high-resolution scientific simulations and observation systems is generating massive spatiotemporal datasets, making efficient, error-bounded compression increasingly important. Meanwhile, decoder-only large language models (LLMs) have demonstrated remarkable capabilities in modeling complex sequential data. In this paper, we propose LLMCOMP, a novel lossy compression paradigm that leverages decoder-only large LLMs to model scientific data. LLMCOMP first quantizes 3D fields into discrete tokens, arranges them via Z-order curves to preserve locality, and applies coverage-guided sampling to enhance training efficiency. An autoregressive transformer is then trained with spatial-temporal embeddings to model token transitions. During compression, the model performs top-k prediction, storing only rank indices and fallback corrections to ensure strict error bounds. Experiments on multiple reanalysis datasets show that LLMCOMP consistently outperforms state-of-the-art compressors, achieving up to 30% higher compression ratios under strict error bounds. These results highlight the potential of LLMs as general-purpose compressors for high-fidelity scientific data.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 数据压缩 科学数据 压缩率 大语言模型
相关文章