cs.AI updates on arXiv.org 10月29日 12:19
高效两阶段ICL数据标注方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种高效的两阶段数据标注方法,降低大型语言模型在数据标注上的依赖,通过交叉任务示例和基于图的标签传播技术,实现低成本的数据标注,为情境学习提供有效支持。

arXiv:2510.24528v1 Announce Type: new Abstract: The capability of in-context learning (ICL) enables large language models (LLMs) to perform novel tasks without parameter updates by conditioning on a few input-output examples. However, collecting high-quality examples for new or challenging tasks can be costly and labor-intensive. In this work, we propose a cost-efficient two-stage pipeline that reduces reliance on LLMs for data labeling. Our approach first leverages readily available cross-task examples to prompt an LLM and pseudo-label a small set of target task instances. We then introduce a graph-based label propagation method that spreads label information to the remaining target examples without additional LLM queries. The resulting fully pseudo-labeled dataset is used to construct in-task demonstrations for ICL. This pipeline combines the flexibility of cross-task supervision with the scalability of LLM-free propagation. Experiments across five tasks demonstrate that our method achieves strong performance while lowering labeling costs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

情境学习 数据标注 大型语言模型 标签传播 交叉任务
相关文章