cs.AI updates on arXiv.org 10月29日 12:19
Orion:高效推理框架助力实时Web应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Orion的高效推理框架,用于解决大型语言模型在实时Web应用中的推理效率和质量问题。Orion通过依赖感知查询分解和逻辑并行内容扩展,实现了跨查询并行,显著提高了推理性能。

arXiv:2510.24390v1 Announce Type: new Abstract: The integration of Large Language Models (LLMs) into real-time Web applications, such as AI-powered search and conversational agents, presents a fundamental Web infrastructure challenge: reconciling the demand for high-quality, complex reasoning with the stringent low-latency and high-throughput requirements of interactive services. Current LLM reasoning, hindered by computationally inefficient sequential generation and rigid reasoning strategies, creates a critical bottleneck for the Web services. Existing approaches typically optimize the LLM reasoning for either efficiency or quality but struggle to achieve both, and thus fail to meet the dual requirements of modern Web platforms. To overcome these limitations, we propose Orion, a novel and efficient reasoning framework that enables dependency-aware query decomposition and logic-parallel content expansion. Concretely, Orion decomposes a single query reasoning process into two synergistic phases: (1) \textit{key point generation}, which distills logically structured key points through retrieval-augmented few-shot prompting, and (2) \textit{content parallel expansion}, which concurrently elaborates on these points based on a dependency graph to ensure logical consistency. Furthermore, Orion introduces a pipeline scheduling mechanism that exploits the complementary computational characteristics of the two phases (generation imposes pressure on GPU computing and expansion stresses on GPU memory) across multiple queries, enabling cross-query parallelism and dramatically improving reasoning performance (\ie, efficiency and quality). Experiments on diverse benchmarks show that Orion not only delivers up to 4.33x higher token generation speed and 3.42x lower answer latency over the baselines but also improves reasoning quality by up to 18.75% through explicitly modeling inter-point dependencies.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 实时Web应用 推理框架
相关文章