cs.AI updates on arXiv.org 10月29日 12:19
gLLM在传播研究中的应用与挑战
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了生成大型语言模型(gLLM)在传播研究中的应用,指出其在内容分析中的优势与挑战,并提出了应对策略。

arXiv:2510.24337v1 Announce Type: new Abstract: Generative Large Language Models (gLLMs), such as ChatGPT, are increasingly being used in communication research for content analysis. Studies show that gLLMs can outperform both crowd workers and trained coders, such as research assistants, on various coding tasks relevant to communication science, often at a fraction of the time and cost. Additionally, gLLMs can decode implicit meanings and contextual information, be instructed using natural language, deployed with only basic programming skills, and require little to no annotated data beyond a validation dataset - constituting a paradigm shift in automated content analysis. Despite their potential, the integration of gLLMs into the methodological toolkit of communication research remains underdeveloped. In gLLM-assisted quantitative content analysis, researchers must address at least seven critical challenges that impact result quality: (1) codebook development, (2) prompt engineering, (3) model selection, (4) parameter tuning, (5) iterative refinement, (6) validation of the model's reliability, and optionally, (7) performance enhancement. This paper synthesizes emerging research on gLLM-assisted quantitative content analysis and proposes a comprehensive best-practice guide to navigate these challenges. Our goal is to make gLLM-based content analysis more accessible to a broader range of communication researchers and ensure adherence to established disciplinary quality standards of validity, reliability, reproducibility, and research ethics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

gLLM 传播研究 内容分析 挑战 应用
相关文章