cs.AI updates on arXiv.org 10月29日 12:17
数字孪生在动态系统建模与控制中的应用研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了数字孪生在动态系统建模与控制中的应用,通过整合物理基础、数据驱动和混合方法,结合传统与AI驱动控制器,在微型温室测试平台上,开发了四种预测模型(线性、基于物理建模、长短期记忆和混合分析与建模),并比较了插值和外推场景下的性能。同时,实施了三种控制策略(模型预测控制、强化学习和基于大型语言模型的控制),以评估精度、适应性和实施成本之间的权衡。结果表明,混合分析与建模模型在精度、泛化能力和计算效率方面提供了最平衡的性能,而长短期记忆模型在更高的资源成本下实现了高精度。在控制器方面,模型预测控制提供了稳健和可预测的性能,强化学习展示了强大的适应性,而基于大型语言模型的控制器在结合预测工具时提供了灵活的人机交互。

arXiv:2510.23882v1 Announce Type: new Abstract: This work investigates the use of digital twins for dynamical system modeling and control, integrating physics-based, data-driven, and hybrid approaches with both traditional and AI-driven controllers. Using a miniature greenhouse as a test platform, four predictive models Linear, Physics-Based Modeling (PBM), Long Short Term Memory (LSTM), and Hybrid Analysis and Modeling (HAM) are developed and compared under interpolation and extrapolation scenarios. Three control strategies Model Predictive Control (MPC), Reinforcement Learning (RL), and Large Language Model (LLM) based control are also implemented to assess trade-offs in precision, adaptability, and implementation effort. Results show that in modeling HAM provides the most balanced performance across accuracy, generalization, and computational efficiency, while LSTM achieves high precision at greater resource cost. Among controllers, MPC delivers robust and predictable performance, RL demonstrates strong adaptability, and LLM-based controllers offer flexible human-AI interaction when coupled with predictive tools.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数字孪生 动态系统建模 控制策略 预测模型
相关文章