cs.AI updates on arXiv.org 10月29日 12:15
Game-TARS:通用游戏智能体突破性研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为Game-TARS的通用游戏智能体,通过统一可扩展的动作空间进行训练,实现跨领域的大规模持续预训练。该智能体在Minecraft等任务上成功率达到前代模型的两倍,并在FPS基准测试中超越GPT-5、Gemini-2.5-Pro和Claude-4-Sonnet。

arXiv:2510.23691v1 Announce Type: new Abstract: We present Game-TARS, a generalist game agent trained with a unified, scalable action space anchored to human-aligned native keyboard-mouse inputs. Unlike API- or GUI-based approaches, this paradigm enables large-scale continual pre-training across heterogeneous domains, including OS, web, and simulation games. Game-TARS is pre-trained on over 500B tokens with diverse trajectories and multimodal data. Key techniques include a decaying continual loss to reduce causal confusion and an efficient Sparse-Thinking strategy that balances reasoning depth and inference cost. Experiments show that Game-TARS achieves about 2 times the success rate over the previous sota model on open-world Minecraft tasks, is close to the generality of fresh humans in unseen web 3d games, and outperforms GPT-5, Gemini-2.5-Pro, and Claude-4-Sonnet in FPS benchmarks. Scaling results on training-time and test-time confirm that the unified action space sustains improvements when scaled to cross-game and multimodal data. Our results demonstrate that simple, scalable action representations combined with large-scale pre-training provide a promising path toward generalist agents with broad computer-use abilities.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

通用游戏智能体 Game-TARS 大规模预训练 FPS基准测试 智能体研究
相关文章