arXiv:2502.10999v2 Announce Type: replace-cross Abstract: This work demonstrates that diffusion models can achieve font-controllable multilingual text rendering using just raw images without font label annotations.Visual text rendering remains a significant challenge. While recent methods condition diffusion on glyphs, it is impossible to retrieve exact font annotations from large-scale, real-world datasets, which prevents user-specified font control. To address this, we propose a data-driven solution that integrates the conditional diffusion model with a text segmentation model, utilizing segmentation masks to capture and represent fonts in pixel space in a self-supervised manner, thereby eliminating the need for any ground-truth labels and enabling users to customize text rendering with any multilingual font of their choice. The experiment provides a proof of concept of our algorithm in zero-shot text and font editing across diverse fonts and languages, providing valuable insights for the community and industry toward achieving generalized visual text rendering. Code is available at github.com/bowen-upenn/ControlText.
