cs.AI updates on arXiv.org 10月28日 12:14
AttentionRAG:RAG系统高效上下文剪枝方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出AttentionRAG,一种针对RAG系统上下文剪枝的方法,通过注意力聚焦机制提高上下文压缩率,实验表明其性能优于现有方法。

arXiv:2503.10720v2 Announce Type: replace-cross Abstract: While RAG demonstrates remarkable capabilities in LLM applications, its effectiveness is hindered by the ever-increasing length of retrieved contexts, which introduces information redundancy and substantial computational overhead. Existing context pruning methods, such as LLMLingua, lack contextual awareness and offer limited flexibility in controlling compression rates, often resulting in either insufficient pruning or excessive information loss. In this paper, we propose AttentionRAG, an attention-guided context pruning method for RAG systems. The core idea of AttentionRAG lies in its attention focus mechanism, which reformulates RAG queries into a next-token prediction paradigm. This mechanism isolates the query's semantic focus to a single token, enabling precise and efficient attention calculation between queries and retrieved contexts. Extensive experiments on LongBench and Babilong benchmarks show that AttentionRAG achieves up to 6.3$\times$ context compression while outperforming LLMLingua methods by around 10\% in key metrics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG 上下文剪枝 注意力机制 性能提升 信息压缩
相关文章