cs.AI updates on arXiv.org 10月28日 12:14
DIPPER:提升LLM推理能力的无监督集成框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出DIPPER,一种将单个LLM转化为有效推理时集成框架的方法。通过并行提供优化和多样化的提示,DIPPER激发不同的推理路径,显著提升推理性能,在MATH等基准测试中优于大模型。

arXiv:2412.15238v2 Announce Type: replace-cross Abstract: Large Language Models (LLMs), particularly smaller variants, still struggle with complex reasoning tasks. While inference-time prompting can guide reasoning, existing methods often rely on sequential queries. Ensemble approaches offer a promising path to performance gains, especially given recent batch inference speed-ups. This work introduces DIPPER, a novel, training-free framework that transforms a single LLM into an effective inference-time ensemble. By feeding the model an optimized and diverse set of prompts in parallel, DIPPER elicits varied reasoning paths, leading to performance gains. We empirically demonstrate significant improvements on reasoning benchmarks, such as MATH, where a DIPPER ensemble of three Qwen2-MATH-1.5B instances (via parallel prompting of a single model) outperforms a larger 7B model.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 推理能力 集成框架 DIPPER 性能提升
相关文章