cs.AI updates on arXiv.org 10月28日 12:14
混合深度学习模型提升水质监测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍多种混合深度学习模型在预测水质参数上的应用,通过CatBoost、XGBoost、Extra Trees等模型和CNN、LSTM神经网络,提高了水质指数预测的准确性,并展示了其在水质监测中的应用。

arXiv:2409.10898v3 Announce Type: replace-cross Abstract: Ensuring safe water supplies requires effective water quality monitoring, especially in developing countries like Nepal, where contamination risks are high. This paper introduces various hybrid deep learning models to predict on the CCME dataset with multiple water quality parameters from Canada, China, the UK, the USA, and Ireland, with 2.82 million data records feature-engineered and evaluated using them. Models such as CatBoost, XGBoost, and Extra Trees, along with neural networks combining CNN and LSTM layers, are used to capture temporal and spatial patterns in the data. The model demonstrated notable accuracy improvements, aiding proactive water quality control. CatBoost, XGBoost, and Extra Trees Regressor predicted Water Quality Index (WQI) values with an average RMSE of 1.2 and an R squared score of 0.99. Additionally, classifiers achieved 99% accuracy, cross-validated across models. SHAP analysis showed the importance of indicators like F.R.C. and orthophosphate levels in hybrid architectures' classification decisions. The practical application is demonstrated along with a chatbot application for water quality insights.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

水质监测 深度学习 混合模型 水质指数 水处理
相关文章