cs.AI updates on arXiv.org 10月28日 12:14
近似近端点算法在MFG均衡求解中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文在Lasry--Lions框架下,提出了一种近似近端点算法,用于求解无限多智能体之间的均值场博弈(MFG)均衡问题。该算法在非严格单调条件下收敛,并通过镜像下降法实现近似更新,实验表明其能可靠收敛到无规化均值场均衡。

arXiv:2410.05127v4 Announce Type: replace-cross Abstract: In the Lasry--Lions framework, Mean-Field Games (MFGs) model interactions among an infinite number of agents. However, existing algorithms either require strict monotonicity or only guarantee the convergence of averaged iterates, as in Fictitious Play in continuous time. We address this gap with the following theoretical result. First, we prove that the last-iterated policy of a proximal-point (PP) update with KL regularization converges to an equilibrium of MFG under non-strict monotonicity. Second, we see that each PP update is equivalent to finding the equilibria of a KL-regularized MFG. We then prove that this equilibrium can be found using Mirror Descent (MD) with an exponential last-iterate convergence rate. Building on these insights, we propose the Approximate Proximal-Point ($\mathtt{APP}$) algorithm, which approximately implements the PP update via a small number of MD steps. Numerical experiments on standard benchmarks confirm that the $\mathtt{APP}$ algorithm reliably converges to the unregularized mean-field equilibrium without time-averaging.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

均值场博弈 近似算法 均衡求解 镜像下降法 Lasry--Lions框架
相关文章