cs.AI updates on arXiv.org 10月28日 12:14
联邦学习中的FedSLS算法优化学习率调整
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为FedSLS的联邦学习算法,通过随机变体线搜索方法来优化学习率调整,以解决客户端异质性和局部梯度噪声问题,提高联邦优化的性能。

arXiv:2408.17145v2 Announce Type: replace-cross Abstract: The classical line search for learning rate (LR) tuning in the stochastic gradient descent (SGD) algorithm can tame the convergence slowdown due to data-sampling noise. In a federated setting, wherein the client heterogeneity introduces a slowdown to the global convergence, line search can be relevantly adapted. In this work, we show that a stochastic variant of line search tames the heterogeneity in federated optimization in addition to that due to client-local gradient noise. To this end, we introduce Federated Stochastic Line Search (FedSLS) algorithm and show that it achieves deterministic rates in expectation. Specifically, FedSLS offers linear convergence for strongly convex objectives even with partial client participation. Recently, the extrapolation of the server's LR has shown promise for improved empirical performance for federated learning. To benefit from extrapolation, we extend FedSLS to Federated Extrapolated Stochastic Line Search (FedExpSLS) and prove its convergence. Our extensive empirical results show that the proposed methods perform at par or better than the popular federated learning algorithms across many convex and non-convex problems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 学习率调整 线搜索 FedSLS算法
相关文章