cs.AI updates on arXiv.org 10月28日 12:14
无线网络中SFL鲁棒性研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对无线网络中SFL的鲁棒性问题,分析了干扰对SFL的影响,并提出了基于无线感知的抗干扰策略,实验结果表明该方法有效提高了SFL在自然语言处理和计算机视觉任务中的性能。

arXiv:2407.11654v3 Announce Type: replace-cross Abstract: Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML), where components of large ML models are outsourced to remote servers. A significant challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming that could jeopardize the learning process. This is particularly pronounced for embedding parameters in large language models (LLMs) and vision language models (VLMs), which are learned feature vectors essential for domain understanding. In this paper, rigorous insights are provided into the influence of jamming embeddings in SFL by deriving an expression for the ML training loss divergence and showing that it is upper-bounded by the mean squared error (MSE). Based on this analysis, a physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks. R-SFLLM leverages wireless sensing data to gather information on the jamming directions-of-arrival (DoAs) for the purpose of devising a novel, sensing-assisted anti-jamming strategy while jointly optimizing beamforming, user scheduling, and resource allocation. Extensive experiments using both LLMs and VLMs demonstrate R-SFLLM's effectiveness, achieving close-to-baseline performance across various natural language processing (NLP) and computer vision (CV) tasks, datasets, and modalities. The proposed methodology further introduces an adversarial training component, where controlled noise exposure significantly enhances the model's resilience to perturbed parameters during training. The results show that more noise-sensitive models, such as RoBERTa, benefit from this feature, especially when resource allocation is unfair. It is also shown that worst-case jamming in particular translates into worst-case model outcomes, thereby necessitating the need for jamming-resilient SFL protocols.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 无线网络 鲁棒性 抗干扰 自然语言处理
相关文章