cs.AI updates on arXiv.org 10月28日 12:14
LLM拒绝行为与社会身份差异研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究大型语言模型拒绝行为的社会技术结果,通过变性别身份的对照角色设计,分析了基于性别身份的语言线索如何影响拒绝在二元性别分类任务中的表现,发现跨性别和非二元性别身份的角色在非有害情境下也经历了显著较高的拒绝率。

arXiv:2406.08222v3 Announce Type: replace-cross Abstract: Refusal behavior by Large Language Models is increasingly visible in content moderation, yet little is known about how refusals vary by the identity of the user making the request. This study investigates refusal as a sociotechnical outcome through a counterfactual persona design that varies gender identity--including male, female, non-binary, and transgender personas--while keeping the classification task and visual input constant. Focusing on a vision-language model (GPT-4V), we examine how identity-based language cues influence refusal in binary gender classification tasks. We find that transgender and non-binary personas experience significantly higher refusal rates, even in non-harmful contexts. Our findings also provide methodological implications for equity audits and content analysis using LLMs. Our findings underscore the importance of modeling identity-driven disparities and caution against uncritical use of AI systems for content coding. This study advances algorithmic fairness by reframing refusal as a communicative act that may unevenly regulate epistemic access and participation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 拒绝行为 社会技术身份 性别差异 算法公平
相关文章