cs.AI updates on arXiv.org 10月28日 12:14
DAMPE:蛋白质功能预测的多模态嵌入框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为DAMPE的统一框架,用于蛋白质功能预测。该框架通过两种核心机制解决跨模态分布不匹配和噪声关系图问题,显著提升了蛋白质功能预测的准确性。

arXiv:2510.23273v1 Announce Type: cross Abstract: Accurate protein function prediction requires integrating heterogeneous intrinsic signals (e.g., sequence and structure) with noisy extrinsic contexts (e.g., protein-protein interactions and GO term annotations). However, two key challenges hinder effective fusion: (i) cross-modal distributional mismatch among embeddings produced by pre-trained intrinsic encoders, and (ii) noisy relational graphs of extrinsic data that degrade GNN-based information aggregation. We propose Diffused and Aligned Multi-modal Protein Embedding (DAMPE), a unified framework that addresses these through two core mechanisms. First, we propose Optimal Transport (OT)-based representation alignment that establishes correspondence between intrinsic embedding spaces of different modalities, effectively mitigating cross-modal heterogeneity. Second, we develop a Conditional Graph Generation (CGG)-based information fusion method, where a condition encoder fuses the aligned intrinsic embeddings to provide informative cues for graph reconstruction. Meanwhile, our theoretical analysis implies that the CGG objective drives this condition encoder to absorb graph-aware knowledge into its produced protein representations. Empirically, DAMPE outperforms or matches state-of-the-art methods such as DPFunc on standard GO benchmarks, achieving AUPR gains of 0.002-0.013 pp and Fmax gains 0.004-0.007 pp. Ablation studies further show that OT-based alignment contributes 0.043-0.064 pp AUPR, while CGG-based fusion adds 0.005-0.111 pp Fmax. Overall, DAMPE offers a scalable and theoretically grounded approach for robust multi-modal protein representation learning, substantially enhancing protein function prediction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

蛋白质功能预测 多模态嵌入 DAMPE 信息融合 蛋白质结构
相关文章