cs.AI updates on arXiv.org 10月28日 12:14
基于自由能原理的深度主动推理框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于自由能原理的深度主动推理框架,通过整合扩散策略和多重时间尺度循环状态空间模型,实现机器人自主导航,提高探索效率和目标导向导航的成功率。

arXiv:2510.23258v1 Announce Type: cross Abstract: Autonomous robotic navigation in real-world environments requires exploration to acquire environmental information as well as goal-directed navigation in order to reach specified targets. Active inference (AIF) based on the free-energy principle provides a unified framework for these behaviors by minimizing the expected free energy (EFE), thereby combining epistemic and extrinsic values. To realize this practically, we propose a deep AIF framework that integrates a diffusion policy as the policy model and a multiple timescale recurrent state-space model (MTRSSM) as the world model. The diffusion policy generates diverse candidate actions while the MTRSSM predicts their long-horizon consequences through latent imagination, enabling action selection that minimizes EFE. Real-world navigation experiments demonstrated that our framework achieved higher success rates and fewer collisions compared with the baselines, particularly in exploration-demanding scenarios. These results highlight how AIF based on EFE minimization can unify exploration and goal-directed navigation in real-world robotic settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

主动推理 自由能原理 机器人导航
相关文章