cs.AI updates on arXiv.org 10月28日 12:14
Eigen-Value:面向域外鲁棒性的数据估值框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Eigen-Value框架,通过在分布内数据子集上评估域差异,实现域外鲁棒的数据估值,有效降低计算成本,提高数据估值在域外设置下的鲁棒性。

arXiv:2510.23409v1 Announce Type: cross Abstract: Data valuation has become central in the era of data-centric AI. It drives efficient training pipelines and enables objective pricing in data markets by assigning a numeric value to each data point. Most existing data valuation methods estimate the effect of removing individual data points by evaluating changes in model validation performance under in-distribution (ID) settings, as opposed to out-of-distribution (OOD) scenarios where data follow different patterns. Since ID and OOD data behave differently, data valuation methods based on ID loss often fail to generalize to OOD settings, particularly when the validation set contains no OOD data. Furthermore, although OOD-aware methods exist, they involve heavy computational costs, which hinder practical deployment. To address these challenges, we introduce \emph{Eigen-Value} (EV), a plug-and-play data valuation framework for OOD robustness that uses only an ID data subset, including during validation. EV provides a new spectral approximation of domain discrepancy, which is the gap of loss between ID and OOD using ratios of eigenvalues of ID data's covariance matrix. EV then estimates the marginal contribution of each data point to this discrepancy via perturbation theory, alleviating the computational burden. Subsequently, EV plugs into ID loss-based methods by adding an EV term without any additional training loop. We demonstrate that EV achieves improved OOD robustness and stable value rankings across real-world datasets, while remaining computationally lightweight. These results indicate that EV is practical for large-scale settings with domain shift, offering an efficient path to OOD-robust data valuation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据估值 域外鲁棒性 Eigen-Value框架
相关文章