cs.AI updates on arXiv.org 10月28日 12:14
医疗图像分析:自监督学习与领域适应新方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新的自监督学习与领域适应方法,旨在减少对大量标注数据的依赖,提高医疗图像分析的准确性和效率。

arXiv:2510.23325v1 Announce Type: cross Abstract: This thesis works to address a pivotal challenge in medical image analysis: the reliance on extensive labeled datasets, which are often limited due to the need for expert annotation and constrained by privacy and legal issues. By focusing on the development of self-supervised learning techniques and domain adaptation methods, this research aims to circumvent these limitations, presenting a novel approach to enhance the utility and efficacy of deep learning in medical imaging. Central to this thesis is the development of the Medformer, an innovative neural network architecture designed for multitask learning and deep domain adaptation. This model is adept at pre-training on diverse medical image datasets, handling varying sizes and modalities, and is equipped with a dynamic input-output adaptation mechanism. This enables efficient processing and integration of a wide range of medical image types, from 2D X-rays to complex 3D MRIs, thus mitigating the dependency on large labeled datasets. Further, the thesis explores the current state of self-supervised learning in medical imaging. It introduces novel pretext tasks that are capable of extracting meaningful information from unlabeled data, significantly advancing the model's interpretative abilities. This approach is validated through rigorous experimentation, including the use of the MedMNIST dataset, demonstrating the model's proficiency in learning generalized features applicable to various downstream tasks. In summary, this thesis contributes to the advancement of medical image analysis by offering a scalable, adaptable framework that reduces reliance on labeled data. It paves the way for more accurate, efficient diagnostic tools in healthcare, signifying a major step forward in the application of deep learning in medical imaging.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

医疗图像分析 自监督学习 领域适应 深度学习 医疗诊断
相关文章