cs.AI updates on arXiv.org 10月28日 12:14
基于DTW和CNN-GRU的PM2.5长期预测模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合动态时间规整(DTW)和CNN-GRU架构的深度学习框架,实现伊朗伊兹法罕城市PM2.5浓度的长期预测。该方法利用DTW进行智能站相似性选择,并通过集成气象特征优化CNN-GRU架构,实现稳定且高效的PM2.5预测。

arXiv:2510.22863v1 Announce Type: cross Abstract: Reliable long-term forecasting of PM2.5 concentrations is critical for public health early-warning systems, yet existing deep learning approaches struggle to maintain prediction stability beyond 48 hours, especially in cities with sparse monitoring networks. This paper presents a deep learning framework that combines Dynamic Time Warping (DTW) for intelligent station similarity selection with a CNN-GRU architecture to enable extended-horizon PM2.5 forecasting in Isfahan, Iran, a city characterized by complex pollution dynamics and limited monitoring coverage. Unlike existing approaches that rely on computationally intensive transformer models or external simulation tools, our method integrates three key innovations: (i) DTW-based historical sampling to identify similar pollution patterns across peer stations, (ii) a lightweight CNN-GRU architecture augmented with meteorological features, and (iii) a scalable design optimized for sparse networks. Experimental validation using multi-year hourly data from eight monitoring stations demonstrates superior performance compared to state-of-the-art deep learning methods, achieving R2 = 0.91 for 24-hour forecasts. Notably, this is the first study to demonstrate stable 10-day PM2.5 forecasting (R2 = 0.73 at 240 hours) without performance degradation, addressing critical early-warning system requirements. The framework's computational efficiency and independence from external tools make it particularly suitable for deployment in resource-constrained urban environments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PM2.5预测 深度学习 CNN-GRU DTW 环境监测
相关文章