cs.AI updates on arXiv.org 10月28日 12:14
混合模型优化印度大城市空气质量预测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种混合预测框架,结合LOESS分解、ARIMA模型和多尺度CNN-BiLSTM网络,优化印度德里、加尔各答和孟买等大城市空气质量指数(AQI)预测,通过UAMMO优化模型参数,结果显示在PM2.5、O3、CO和NOx等方面均优于传统和深度学习模型。

arXiv:2510.22818v1 Announce Type: cross Abstract: Air pollution remains a critical environmental and public health concern in Indian megacities such as Delhi, Kolkata, and Mumbai, where sudden spikes in pollutant levels challenge timely intervention. Accurate Air Quality Index (AQI) forecasting is difficult due to the coexistence of linear trends, seasonal variations, and volatile nonlinear patterns. This paper proposes a hybrid forecasting framework that integrates LOESS decomposition, ARIMA modeling, and a multi-scale CNN-BiLSTM network with a residual-gated attention mechanism. The LOESS step separates the AQI series into trend, seasonal, and residual components, with ARIMA modeling the smooth components and the proposed deep learning module capturing multi-scale volatility in the residuals. Model hyperparameters are tuned via the Unified Adaptive Multi-Stage Metaheuristic Optimizer (UAMMO), combining multiple optimization strategies for efficient convergence. Experiments on 2021-2023 AQI datasets from the Central Pollution Control Board show that the proposed method consistently outperforms statistical, deep learning, and hybrid baselines across PM2.5, O3, CO, and NOx in three major cities, achieving up to 5-8% lower MSE and higher R^2 scores (>0.94) for all pollutants. These results demonstrate the framework's robustness, sensitivity to sudden pollution events, and applicability to urban air quality management.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

空气质量预测 混合模型 UAMMO优化 印度大城市
相关文章