cs.AI updates on arXiv.org 10月28日 12:14
Sculpting:改进CoT提升LLM推理能力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Sculpting的约束式提示方法,旨在提升LLM的推理能力,通过减少语义模糊和常识错误。实验结果表明,Sculpting在gpt-4o模型上表现优于标准CoT,但在gpt-5模型上却出现反效果,提示提示策略应与模型能力协同进化。

arXiv:2510.22251v1 Announce Type: cross Abstract: Prompt engineering, particularly Chain-of-Thought (CoT) prompting, significantly enhances LLM reasoning capabilities. We introduce "Sculpting," a constrained, rule-based prompting method designed to improve upon standard CoT by reducing errors from semantic ambiguity and flawed common sense. We evaluate three prompting strategies (Zero Shot, standard CoT, and Sculpting) across three OpenAI model generations (gpt-4o-mini, gpt-4o, gpt-5) using the GSM8K mathematical reasoning benchmark (1,317 problems). Our findings reveal a "Prompting Inversion": Sculpting provides advantages on gpt-4o (97% vs. 93% for standard CoT), but becomes detrimental on gpt-5 (94.00% vs. 96.36% for CoT on full benchmark). We trace this to a "Guardrail-to-Handcuff" transition where constraints preventing common-sense errors in mid-tier models induce hyper-literalism in advanced models. Our detailed error analysis demonstrates that optimal prompting strategies must co-evolve with model capabilities, suggesting simpler prompts for more capable models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM CoT Prompting Sculpting Model Capabilities
相关文章