cs.AI updates on arXiv.org 10月28日 12:14
CADEC语料库上NER模型比较研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对比了BERT、GPT-4o等模型在CADEC语料库上的NER性能,发现简单ICL和SFT在NER任务中表现优异。

arXiv:2510.22285v1 Announce Type: cross Abstract: We study clinical Named Entity Recognition (NER) on the CADEC corpus and compare three families of approaches: (i) BERT-style encoders (BERT Base, BioClinicalBERT, RoBERTa-large), (ii) GPT-4o used with few-shot in-context learning (ICL) under simple vs.\ complex prompts, and (iii) GPT-4o with supervised fine-tuning (SFT). All models are evaluated on standard NER metrics over CADEC's five entity types (ADR, Drug, Disease, Symptom, Finding). RoBERTa-large and BioClinicalBERT offer limited improvements over BERT Base, showing the limit of these family of models. Among LLM settings, simple ICL outperforms a longer, instruction-heavy prompt, and SFT achieves the strongest overall performance (F1 $\approx$ 87.1%), albeit with higher cost. We find that the LLM achieve higher accuracy on simplified tasks, restricting classification to two labels.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

NER CADEC 模型比较 GPT-4o BERT
相关文章