cs.AI updates on arXiv.org 10月28日 12:14
LLM赋能ISTQB认证教育
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了如何利用大型语言模型(LLMs)补充ISTQB认证框架,提出了一套数据集、优化提示和评估方法,旨在提高软件测试教育效果。

arXiv:2510.22318v1 Announce Type: cross Abstract: Software testing is a critical component in the software engineering field and is important for software engineering education. Thus, it is vital for academia to continuously improve and update educational methods to reflect the current state of the field. The International Software Testing Qualifications Board (ISTQB) certification framework is globally recognized and widely adopted in industry and academia. However, ISTQB-based learning has been rarely applied with recent generative artificial intelligence advances. Despite the growing capabilities of large language models (LLMs), ISTQB-based learning and instruction with LLMs have not been thoroughly explored. This paper explores and evaluates how LLMs can complement the ISTQB framework for higher education. The findings present four key contributions: (i) the creation of a comprehensive ISTQB-aligned dataset spanning over a decade, consisting of 28 sample exams and 1,145 questions; (ii) the development of a domain-optimized prompt that enhances LLM precision and explanation quality on ISTQB tasks; (iii) a systematic evaluation of state-of-the-art LLMs on this dataset; and (iv) actionable insights and recommendations for integrating LLMs into software testing education. These findings highlight the promise of LLMs in supporting ISTQB certification preparation and offer a foundation for their broader use in software engineering at higher education.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 ISTQB认证 软件测试教育 数据集 评估
相关文章