cs.AI updates on arXiv.org 10月28日 12:14
LUNA:线性扩展的EEG自监督模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为LUNA的自监督基础模型,用于处理脑电图(EEG)数据。LUNA通过压缩多通道EEG到固定大小的潜在空间,实现线性扩展,并在异常检测、伪迹去除、减缓分类和情感识别等四个下游任务上表现出色。

arXiv:2510.22257v1 Announce Type: cross Abstract: Electroencephalography (EEG) offers a non-invasive lens into human brain activity, but building large-scale models is hampered by topological heterogeneity: each public EEG data defines its own electrode layout, limiting generalization. We introduce LUNA (Latent Unified Network Architecture), a self-supervised foundation model that reconciles disparate electrode geometries while scaling linearly -- not quadratically -- with channel count. LUNA compresses multi-channel EEG into a fixed-size, topology-agnostic latent space via learned queries and cross-attention. Downstream transformer blocks then operate exclusively on this latent representation using patch-wise temporal self-attention, decoupling computation from electrode count. Pre-trained on TUEG and Siena (over 21,000 hours of raw EEG across diverse montages) using a masked-patch reconstruction objective, LUNA transfers effectively to four downstream tasks: abnormality detection, artifact rejection, slowing classification, and emotion recognition. It demonstrates highly competitive performance across several benchmarks, achieving state-of-the-art results on TUAR and TUSL, e.g., 0.921 AUROC on TUAR, while reducing FLOPs by 300x and trimming GPU memory use by up to 10x. Critically, these gains are consistent across all evaluated electrode configurations. Code is available at https://github.com/pulp-bio/BioFoundation

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EEG 自监督模型 LUNA 脑电图数据 线性扩展
相关文章