cs.AI updates on arXiv.org 10月28日 12:14
LLMs助力科学发现:类比推理新策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型(LLMs)在类比推理方面的潜力,通过检索跨领域类比和构建领域内类比模板,LLMs能够生成新型电池材料,为科学创新提供了一种新的思路。

arXiv:2510.22312v1 Announce Type: cross Abstract: Analogical reasoning, the transfer of relational structures across contexts (e.g., planet is to sun as electron is to nucleus), is fundamental to scientific discovery. Yet human insight is often constrained by domain expertise and surface-level biases, limiting access to deeper, structure-driven analogies both within and across disciplines. Large language models (LLMs), trained on vast cross-domain data, present a promising yet underexplored tool for analogical reasoning in science. Here, we demonstrate that LLMs can generate novel battery materials by (1) retrieving cross-domain analogs and analogy-guided exemplars to steer exploration beyond conventional dopant substitutions, and (2) constructing in-domain analogical templates from few labeled examples to guide targeted exploitation. These explicit analogical reasoning strategies yield candidates outside established compositional spaces and outperform standard prompting baselines. Our findings position LLMs as interpretable, expert-like hypothesis generators that leverage analogy-driven generalization for scientific innovation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 类比推理 科学创新 电池材料 跨领域数据
相关文章