cs.AI updates on arXiv.org 10月28日 12:13
非平稳连续MFG中的深度强化学习算法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种针对非平稳连续MFGs的深度强化学习算法,基于Fictitious Play方法,结合DRL和监督学习,并引入时间依赖性人口分布的表示,有效提升了MFG问题的应用范围。

arXiv:2510.22158v1 Announce Type: cross Abstract: Mean field games (MFGs) have emerged as a powerful framework for modeling interactions in large-scale multi-agent systems. Despite recent advancements in reinforcement learning (RL) for MFGs, existing methods are typically limited to finite spaces or stationary models, hindering their applicability to real-world problems. This paper introduces a novel deep reinforcement learning (DRL) algorithm specifically designed for non-stationary continuous MFGs. The proposed approach builds upon a Fictitious Play (FP) methodology, leveraging DRL for best-response computation and supervised learning for average policy representation. Furthermore, it learns a representation of the time-dependent population distribution using a Conditional Normalizing Flow. To validate the effectiveness of our method, we evaluate it on three different examples of increasing complexity. By addressing critical limitations in scalability and density approximation, this work represents a significant advancement in applying DRL techniques to complex MFG problems, bringing the field closer to real-world multi-agent systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度强化学习 MFG 非平稳连续模型 时间依赖性人口分布
相关文章