cs.AI updates on arXiv.org 10月28日 12:13
强化学习在交易执行策略中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于强化学习的交易执行策略优化框架,并在市场模拟器中评估其性能。通过将滑点分解为市场影响和执行风险,评估结果表明,该策略在风险与成本平衡方面优于传统方法,突显了强化学习在交易策略优化中的潜力。

arXiv:2510.22206v1 Announce Type: cross Abstract: Execution algorithms are vital to modern trading, they enable market participants to execute large orders while minimising market impact and transaction costs. As these algorithms grow more sophisticated, optimising them becomes increasingly challenging. In this work, we present a reinforcement learning (RL) framework for discovering optimal execution strategies, evaluated within a reactive agent-based market simulator. This simulator creates reactive order flow and allows us to decompose slippage into its constituent components: market impact and execution risk. We assess the RL agent's performance using the efficient frontier based on work by Almgren and Chriss, measuring its ability to balance risk and cost. Results show that the RL-derived strategies consistently outperform baselines and operate near the efficient frontier, demonstrating a strong ability to optimise for risk and impact. These findings highlight the potential of reinforcement learning as a powerful tool in the trader's toolkit.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

强化学习 交易执行策略 市场模拟 风险优化
相关文章