cs.AI updates on arXiv.org 10月28日 12:13
FAME框架应对AI安全挑战
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FAME框架,结合离线形式合成与在线监控,解决AI系统中的沉默故障问题,提高自动驾驶等安全关键系统的可靠性。

arXiv:2510.22224v1 Announce Type: cross Abstract: The integration of Artificial Intelligence (AI) into safety-critical systems introduces a new reliability paradigm: silent failures, where AI produces confident but incorrect outputs that can be dangerous. This paper introduces the Formal Assurance and Monitoring Environment (FAME), a novel framework that confronts this challenge. FAME synergizes the mathematical rigor of offline formal synthesis with the vigilance of online runtime monitoring to create a verifiable safety net around opaque AI components. We demonstrate its efficacy in an autonomous vehicle perception system, where FAME successfully detected 93.5% of critical safety violations that were otherwise silent. By contextualizing our framework within the ISO 26262 and ISO/PAS 8800 standards, we provide reliability engineers with a practical, certifiable pathway for deploying trustworthy AI. FAME represents a crucial shift from accepting probabilistic performance to enforcing provable safety in next-generation systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI安全 FAME框架 自动驾驶 可靠性 形式验证
相关文章