cs.AI updates on arXiv.org 10月28日 12:13
低空无线网络安全通信框架研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对低空无线网络面临的安全威胁,提出一种基于虚拟天线阵列和智能反射表面的安全通信框架,通过多目标优化和混合多智能体控制,提升数据安全和网络效率。

arXiv:2510.22117v1 Announce Type: cross Abstract: Low-altitude wireless networks (LAWNs) represent a promising architecture that integrates unmanned aerial vehicles (UAVs) as aerial nodes to provide enhanced coverage, reliability, and throughput for diverse applications. However, these networks face significant security vulnerabilities from both known and potential unknown eavesdroppers, which may threaten data confidentiality and system integrity. To solve this critical issue, we propose a novel secure communication framework for LAWNs where the selected UAVs within a swarm function as a virtual antenna array (VAA), complemented by intelligent reflecting surface (IRS) to create a robust defense against eavesdropping attacks. Specifically, we formulate a multi-objective optimization problem that simultaneously maximizes the secrecy rate while minimizing the maximum sidelobe level and total energy consumption, requiring joint optimization of UAV excitation current weights, flight trajectories, and IRS phase shifts. This problem presents significant difficulties due to the dynamic nature of the system and heterogeneous components. Thus, we first transform the problem into a heterogeneous Markov decision process (MDP). Then, we propose a heterogeneous multi-agent control approach (HMCA) that integrates a dedicated IRS control policy with a multi-agent soft actor-critic framework for UAV control, which enables coordinated operation across heterogeneous network elements. Simulation results show that the proposed HMCA achieves superior performance compared to baseline approaches in terms of secrecy rate improvement, sidelobe suppression, and energy efficiency. Furthermore, we find that the collaborative and passive beamforming synergy between VAA and IRS creates robust security guarantees when the number of UAVs increases.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

低空无线网络 安全通信 虚拟天线阵列 智能反射表面 多目标优化
相关文章