cs.AI updates on arXiv.org 11小时前
高效且保持效用机器解学习算法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种高效的机器解学习算法,通过优化目标函数解决解学习与效用保持的平衡问题,并通过隐式梯度手术法降低计算成本,实验证明其优于现有方法。

arXiv:2510.22124v1 Announce Type: cross Abstract: Machine unlearning (MU) aims to efficiently remove sensitive or harmful memory from a pre-trained model. The key challenge is to balance the potential tradeoff between unlearning efficacy and utility preservation, which involves forgetting undesirable information as defined while maintaining the model's original performance. One potential way to tackle this problem is to use multi-objective optimization to jointly optimize both the unlearning and utility preservation objectives. However, existing multi-objective methods only guarantee finding a Pareto-optimal solution without fine-grained control, which causes under-optimization of the unlearning objective. To this end, we first model MU as a constrained optimization problem, that is, optimizing the unlearning objective under the constraint of a bounded increase for utility loss. We then show that solving this optimization problem is equivalent to unilateral gradient surgery on the unlearning objective. To resolve the additional computational cost brought by gradient surgery, we propose an implicit gradient surgery method, which approximates the solution to the aforementioned constrained optimization problem via only one backpropagation, thereby achieving efficient utility-preserving MU. Theoretically, we provide a tight convergence analysis of the algorithm. Empirically, our extensive experiments show that the proposed algorithm achieves better tradeoff results than existing baselines. Codes are available at https://github.com/anseryuer/EUPMU-Efficient-Utility-Preserving-Machine-Unlearning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器解学习 效用保持 多目标优化 隐式梯度手术 算法
相关文章