cs.AI updates on arXiv.org 10月28日 12:13
神经符号框架NeuroSymLand实现无人机自主着陆
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出NeuroSymLand,一个神经符号框架,结合离线和在线流程,实现无人机在复杂环境下的自主着陆。该框架利用大型语言模型和人类反馈生成可验证的符号知识,通过实时推理提高着陆精度和可靠性。

arXiv:2510.22204v1 Announce Type: cross Abstract: Autonomous landing in unstructured (cluttered, uneven, and map-poor) environments is a core requirement for Unmanned Aerial Vehicles (UAVs), yet purely vision-based or deep learning models often falter under covariate shift and provide limited interpretability. We propose NeuroSymLand, a neuro-symbolic framework that tightly couples two complementary pipelines: (i) an offline pipeline, where Large Language Models (LLMs) and human-in-the-loop refinement synthesize Scallop code from diverse landing scenarios, distilling generalizable and verifiable symbolic knowledge; and (ii) an online pipeline, where a compact foundation-based semantic segmentation model generates probabilistic Scallop facts that are composed into semantic scene graphs for real-time deductive reasoning. This design combines the perceptual strengths of lightweight foundation models with the interpretability and verifiability of symbolic reasoning. Node attributes (e.g., flatness, area) and edge relations (adjacency, containment, proximity) are computed with geometric routines rather than learned, avoiding the data dependence and latency of train-time graph builders. The resulting Scallop program encodes landing principles (avoid water and obstacles; prefer large, flat, accessible regions) and yields calibrated safety scores with ranked Regions of Interest (ROIs) and human-readable justifications. Extensive evaluations across datasets, diverse simulation maps, and real UAV hardware show that NeuroSymLand achieves higher accuracy, stronger robustness to covariate shift, and superior efficiency compared with state-of-the-art baselines, while advancing UAV safety and reliability in emergency response, surveillance, and delivery missions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

无人机 自主着陆 神经符号框架 复杂环境 实时推理
相关文章