cs.AI updates on arXiv.org 10月28日 12:12
多类异常检测的深度学习框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于深度学习的多类异常检测框架,通过融合人本预处理和时空建模,有效提升监控视频中的异常事件检测准确率。

arXiv:2510.22056v1 Announce Type: cross Abstract: Anomaly detection in surveillance videos remains a challenging task due to the diversity of abnormal events, class imbalance, and scene-dependent visual clutter. To address these issues, we propose a robust deep learning framework that integrates human-centric preprocessing with spatio-temporal modeling for multi-class anomaly classification. Our pipeline begins by applying YOLO-World - an open-vocabulary vision-language detector - to identify human instances in raw video clips, followed by ByteTrack for consistent identity-aware tracking. Background regions outside detected bounding boxes are suppressed via Gaussian blurring, effectively reducing scene-specific distractions and focusing the model on behaviorally relevant foreground content. The refined frames are then processed by an ImageNet-pretrained InceptionV3 network for spatial feature extraction, and temporal dynamics are captured using a bidirectional LSTM (BiLSTM) for sequence-level classification. Evaluated on a five-class subset of the UCF-Crime dataset (Normal, Burglary, Fighting, Arson, Explosion), our method achieves a mean test accuracy of 92.41% across three independent trials, with per-class F1-scores consistently exceeding 0.85. Comprehensive evaluation metrics - including confusion matrices, ROC curves, and macro/weighted averages - demonstrate strong generalization and resilience to class imbalance. The results confirm that foreground-focused preprocessing significantly enhances anomaly discrimination in real-world surveillance scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 异常检测 视频监控
相关文章