cs.AI updates on arXiv.org 10月28日 12:12
生成模型综述:GANs、VAEs与DMs的发展与挑战
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了基于深度学习的生成模型,包括GANs、VAEs和DMs的发展历程、关键技术、伦理问题及未来研究方向。

arXiv:2510.21887v1 Announce Type: cross Abstract: In recent years, deep learning based generative models, particularly Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Diffusion Models (DMs), have been instrumental in in generating diverse, high-quality content across various domains, such as image and video synthesis. This capability has led to widespread adoption of these models and has captured strong public interest. As they continue to advance at a rapid pace, the growing volume of research, expanding application areas, and unresolved technical challenges make it increasingly difficult to stay current. To address this need, this survey introduces a comprehensive taxonomy that organizes the literature and provides a cohesive framework for understanding the development of GANs, VAEs, and DMs, including their many variants and combined approaches. We highlight key innovations that have improved the quality, diversity, and controllability of generated outputs, reflecting the expanding potential of generative artificial intelligence. In addition to summarizing technical progress, we examine rising ethical concerns, including the risks of misuse and the broader societal impact of synthetic media. Finally, we outline persistent challenges and propose future research directions, offering a structured and forward looking perspective for researchers in this fast evolving field.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

生成模型 GANs VAEs DMs 伦理问题
相关文章