cs.AI updates on arXiv.org 10月28日 12:12
行为感知采样框架缓解大型语言模型遗忘
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种行为感知采样框架,通过选择基于指令响应行为和语义多样性跨伤害类别的安全示例,显著减少有害输出,提高大型语言模型在良性行为数据上的微调效率和安全性。

arXiv:2510.21885v1 Announce Type: cross Abstract: Large language models often lose previously aligned safety behaviors when fine-tuned on benign data, a phenomenon known as catastrophic forgetting. Prior work shows that adding random safety examples can mitigate this effect, but it remains unclear which examples are most effective. We propose a behavior-aware sampling framework that selects safety examples based on two complementary factors: instruction-response behavior (e.g., refusal versus compliance) and semantic diversity across harm categories. Systematic evaluation shows that this approach substantially reduces harmful outputs while maintaining helpfulness, achieving up to a 41% reduction in harmfulness with only 0.5% additional training data. These results highlight how targeted data selection can improve the safety and efficiency of fine-tuning at scale.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 行为感知采样 遗忘问题 安全性提升 微调
相关文章