cs.AI updates on arXiv.org 10月28日 12:11
GP-MIA:基于高斯过程模型的隐私保护方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于高斯过程(GP)的成员推理攻击(MIA)方法,旨在解决MIA攻击中的隐私风险问题。该方法通过使用单模型的后验指标训练GP分类器,以区分数据点是否属于模型的训练集,同时提供校准的不确定性估计。实验结果表明,GP-MIA在合成数据和真实世界数据上均表现出高准确性和泛化能力。

arXiv:2510.21846v1 Announce Type: cross Abstract: Membership inference attacks (MIAs) test whether a data point was part of a model's training set, posing serious privacy risks. Existing methods often depend on shadow models or heavy query access, which limits their practicality. We propose GP-MIA, an efficient and interpretable approach based on Gaussian process (GP) meta-modeling. Using post-hoc metrics such as accuracy, entropy, dataset statistics, and optional sensitivity features (e.g. gradients, NTK measures) from a single trained model, GP-MIA trains a GP classifier to distinguish members from non-members while providing calibrated uncertainty estimates. Experiments on synthetic data, real-world fraud detection data, CIFAR-10, and WikiText-2 show that GP-MIA achieves high accuracy and generalizability, offering a practical alternative to existing MIAs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

高斯过程 成员推理攻击 隐私保护 不确定性估计 泛化能力
相关文章