cs.AI updates on arXiv.org 10月28日 12:10
深度学习辅助医学影像诊断研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种可解释的深度学习框架,利用ResNet50和DenseNet121在MRI和胸片图像中检测脑肿瘤和肺炎,并通过Grad-CAM实现结果的可视化解释。

arXiv:2510.21823v1 Announce Type: cross Abstract: Deep Learning (DL) holds enormous potential for improving medical imaging diagnostics, yet the lack of interpretability in most models hampers clinical trust and adoption. This paper presents an explainable deep learning framework for detecting brain tumors in MRI scans and pneumonia in chest X-ray images using two leading Convolutional Neural Networks, ResNet50 and DenseNet121. These models were trained on publicly available Kaggle datasets comprising 7,023 brain MRI images and 5,863 chest X-ray images, achieving high classification performance. DenseNet121 consistently outperformed ResNet50 with 94.3 percent vs. 92.5 percent accuracy for brain tumors and 89.1 percent vs. 84.4 percent accuracy for pneumonia. For better explainability, Gradient-weighted Class Activation Mapping (Grad-CAM) was integrated to create heatmap visualizations superimposed on the test images, indicating the most influential image regions in the decision-making process. Interestingly, while both models produced accurate results, Grad-CAM showed that DenseNet121 consistently focused on core pathological regions, whereas ResNet50 sometimes scattered attention to peripheral or non-pathological areas. Combining deep learning and explainable AI offers a promising path toward reliable, interpretable, and clinically useful diagnostic tools.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 医学影像 可解释AI Grad-CAM 肿瘤检测
相关文章