cs.AI updates on arXiv.org 10月28日 12:10
跨域融合推荐系统MICRec研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为MICRec的推荐系统框架,融合了归纳建模、多模态指导和跨域迁移,旨在处理复杂推荐场景,并通过实验验证了其在数据稀疏场景下的有效性。

arXiv:2510.21812v1 Announce Type: cross Abstract: Recommender systems have long been built upon the modeling of interactions between users and items, while recent studies have sought to broaden this paradigm by generalizing to new users and items, incorporating diverse information sources, and transferring knowledge across domains. Nevertheless, these efforts have largely focused on individual aspects, hindering their ability to tackle the complex recommendation scenarios that arise in daily consumptions across diverse domains. In this paper, we present MICRec, a unified framework that fuses inductive modeling, multimodal guidance, and cross-domain transfer to capture user contexts and latent preferences in heterogeneous and incomplete real-world data. Moving beyond the inductive backbone of INMO, our model refines expressive representations through modality-based aggregation and alleviates data sparsity by leveraging overlapping users as anchors across domains, thereby enabling robust and generalizable recommendation. Experiments show that MICRec outperforms 12 baselines, with notable gains in domains with limited training data.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

推荐系统 跨域推荐 数据融合 归纳建模 多模态学习
相关文章