arXiv:2510.21794v1 Announce Type: cross Abstract: Vision-Language Models (VLMs) have become essential backbones of modern multimodal intelligence, yet their outputs remain prone to hallucination-plausible text misaligned with visual inputs. Existing alignment approaches often rely on expensive fine-tuning with annotated preference data or sequence-level inference strategies that provide only coarse, delayed feedback. To overcome these limitations, we present TITA (Token-level Inference-Time Alignment), a lightweight framework that freezes the base VLM and instead trains a reward model to approximate its distribution. During inference, implicit preference signals are extracted as log-probability ratios between the reward model and the target VLM, yielding dense autoregressive feedback. This formulation can be viewed as an inference-time variant of Direct Preference Optimization (DPO), providing token-level corrective signals without retraining the backbone. Extensive evaluations on LLaVA-1.5-7B and 13B show consistent gains across 12 benchmarks, with improvements of 8.6% on MMVet and 6.7% on POPE, indicating stronger general understanding and reduced hallucinations. Additional experiments on Qwen2.5-VL-7B and DeepSeek-VL2-27.5B show comparable gains, especially in hallucination reduction and VQA accuracy, while incurring negligible inference overhead.
