cs.AI updates on arXiv.org 10月28日 12:09
VRG技术提升扩散模型生成质量
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种统计测量预测误差的新技术,并引入VRG方法减轻误差,显著提高扩散模型生成质量。

arXiv:2510.21792v1 Announce Type: cross Abstract: Diffusion models have become emerging generative models. Their sampling process involves multiple steps, and in each step the models predict the noise from a noisy sample. When the models make prediction, the output deviates from the ground truth, and we call such a deviation as \textit{prediction error}. The prediction error accumulates over the sampling process and deteriorates generation quality. This paper introduces a novel technique for statistically measuring the prediction error and proposes the Variance-Reduction Guidance (VRG) method to mitigate this error. VRG does not require model fine-tuning or modification. Given a predefined sampling trajectory, it searches for a new trajectory which has the same number of sampling steps but produces higher quality results. VRG is applicable to both conditional and unconditional generation. Experiments on various datasets and baselines demonstrate that VRG can significantly improve the generation quality of diffusion models. Source code is available at https://github.com/shifengxu/VRG.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

扩散模型 生成质量 VRG方法 预测误差 统计测量
相关文章