cs.AI updates on arXiv.org 10月28日 12:09
基于深度学习的乳腺癌早期检测框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于深度学习的乳腺癌早期检测框架,通过分析细针穿刺细胞图像,实现高精度分类,并引入可解释AI技术提高临床应用的可信度。

arXiv:2510.21780v1 Announce Type: cross Abstract: In this study, we present an interpretable deep learning framework for the early detection of breast cancer using quantitative features extracted from digitized fine needle aspirate (FNA) images of breast masses. Our deep neural network, using ReLU activations, the Adam optimizer, and a binary cross-entropy loss, delivers state-of-the-art classification performance, achieving an accuracy of 0.992, precision of 1.000, recall of 0.977, and an F1 score of 0.988. These results substantially exceed the benchmarks reported in the literature. We evaluated the model under identical protocols against a suite of well-established algorithms (logistic regression, decision trees, random forests, stochastic gradient descent, K-nearest neighbors, and XGBoost) and found the deep model consistently superior on the same metrics. Recognizing that high predictive accuracy alone is insufficient for clinical adoption due to the black-box nature of deep learning models, we incorporated model-agnostic Explainable AI techniques such as SHAP and LIME to produce feature-level attributions and human-readable visualizations. These explanations quantify the contribution of each feature to individual predictions, support error analysis, and increase clinician trust, thus bridging the gap between performance and interpretability for real-world clinical use. The concave points feature of the cell nuclei is found to be the most influential feature positively impacting the classification task. This insight can be very helpful in improving the diagnosis and treatment of breast cancer by highlighting the key characteristics of breast tumor.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 乳腺癌检测 可解释AI
相关文章