cs.AI updates on arXiv.org 10月28日 12:07
高效生成软件工程模型训练bug方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新的合成生成困难且多样化的bug的方法,通过让软件工程代理在代码库中引入新功能,可能导致测试失败而生成bug。实验表明,该方法生成的bug对监督微调更有效,且能提升模型在软件工程基准测试中的表现。

arXiv:2510.19898v1 Announce Type: cross Abstract: High quality bugs are key to training the next generation of language model based software engineering (SWE) agents. We introduce a novel method for synthetic generation of difficult and diverse bugs. Our method instructs SWE Agents to introduce a feature into the codebase whereby they may unintentionally break tests, resulting in bugs. Prior approaches often induce an out-of-distribution effect by generating bugs intentionally (e.g. by introducing local perturbation to existing code), which does not reflect realistic development processes. We perform qualitative analysis to demonstrate that our approach for generating bugs more closely reflects the patterns found in human-authored edits. Through extensive experiments, we demonstrate that our bugs provide more efficient training data for supervised fine-tuning, outperforming other bug datasets by 2% with half the training data (1.2k vs. 3k bugs). We train on our newly generated bugs in addition to existing bug datasets to get FrogBoss a state-of-the-art 32B parameter model on SWE-bench Verified with a pass@1 of 54.6% and FrogMini a state-of-the-art 14B model on SWE-bench Verified with a pass@1 of 45.3% on SWE-bench Verified averaged over three seeds.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

软件工程 语言模型 bug生成 模型训练 监督微调
相关文章